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Rigid body molecular dynamics with nonholonomic constraints:
Molecular thermostat algorithms

Ramzi Kutteh* and R. B. Jones
Department of Physics, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kin

~Received 20 September 1999!

Generalized Euler equations and center of mass equations are derived to describe the motion of a rigid body
under general nonholonomic constraints. These equations provide a basis for developing algorithms for rigid
body molecular dynamics~MD! simulations with nonholonomic constraints. In particular, two distinct molecu-
lar thermostat algorithms for constant temperature rigid body MD simulations are described. Both algorithms
ensure satisfaction of the temperature constraint at every MD time step, without introducing additional nu-
merical errors into the center of mass velocities or angular velocities. Results from constant temperature MD
simulations of a system of 500 methylene chloride (CH2Cl2) rigid molecules using both thermostats are
presented, exhibiting their efficiency and accuracy. Finally, a generalized Gauss’s principle of least constraint
is derived, to establish a formal connection between the molecular approach described here for incorporating
nonholonomic constraints in MD simulations and previous atomistic approaches.

PACS number~s!: 02.70.Ns, 05.10.2a, 07.05.Tp, 02.70.2c
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I. INTRODUCTION

Nonholonomic constraints involving velocities are com
monly used@1–3# in equilibrium and nonequilibrium mo
lecular dynamics~MD! simulations. It is often desirable t
impose holonomic and nonholonomic constraints simu
neously in a MD simulation. Either of two methods can
used for this purpose.

First, both the holonomic and nonholonomic constrai
can be implemented explicitly@4,5# by means of Lagrange
multiplier techniques, which are essentially generalizatio
to additional nonholonomic constraints of approaches@6–9#
developed previously for explicit implementation of hol
nomic constraints only. For example, the popular SHAK
algorithm@6,7# for holonomic constraints is generalized to
GSHAKE algorithm@4,5# for handling both holonomic and
nonholonomic constraints. This first method, so-called ato
istic approach, is practical for totally or partially rigid mo
lecular models, as well as for purely nonholonomic co
straints, of course.

Second, for totally rigid molecular models, it is comput
tionally advantageous in some situations@1,9,10# to imple-
ment the holonomic rigidity constraints implicitly, by mean
of any of a variety of available rigid body MD method
@1,10–14#, while still incorporating the nonholonomic con
straints explicitly with the Lagrange multiplier techniqu
We shall refer to this alternative approach of imposing n
holonomic constraints in rigid body MD simulations as t
molecular approach. It is our objective here to first der
equations of motion for rigid molecules under explicit
treated general nonholonomic constraints, and then to
velop, based on these equations, two distinct molecular t
mostat algorithms for constant kinetic~i.e., instantaneous!
temperature rigid body MD simulations. It is worth noting
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the outset that although a number of sophisticated rigid b
algorithms @10–14# and semirigid body algorithms@15,16#
for MD simulations have been proposed, the molecular th
mostat algorithms described here are based on the b
quaternion rigid body algorithm@1,3#, in order to illustrate
most clearly and simply the additions required to go from
pure rigid body algorithm to a molecular thermostat alg
rithm based on it. The extension of the basic ideas prese
here to the more sophisticated rigid body algorithms is,
principle at least, feasible.

Classical mechanics treatments of nonholonomic c
straints @17,18# typically involve rigid bodies with rolling
~without slipping! constraints~e.g., rolling sphere or disk on
a surface! and are consequently all linear in the velocitie
We are interested here, however, in describing the dynam
of rigid molecular models subject to more general~nonlin-
ear! nonholonomic constraints. Although actual mechani
examples of nonlinear nonholonomic constraints are r
@17#, computer simulations provide in contrast a flexible to
for imposing whatever forms of nonholonomic constrain
necessary to simulate desirable conditions. In particula
common form of a nonholonomic constraint in equilibriu
and nonequilibrium MD simulations is the constant kine
temperature constraint, nonlinear in the velocities.

Accordingly, we derive in Sec. II generalized equations
motion of a rigid body subject to general nonholonomic co
straints. Using these equations, we develop in Sec. II
predictor-corrector quaternion thermostat algorithm for rig
body MD with a nonholonomic constant temperature co
straint. However, when this basic thermostat algorithm
applied in MD simulations, the constant temperature c
straint diverges progressively from its constraint value,
illustrated numerically in Sec. V. This numerical drift in th
constraint is expected@1,4,5,19# because of the truncatio
error inherent in any numerical integration algorithm used
solve the constrained equations of motion. Two distinct
proaches are developed here to deal with the constraint d
First, we describe a correction technique for use with
basic thermostat algorithm, which eliminates the numeri
ic
3186 ©2000 The American Physical Society
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drift without introducing additional numerical errors in th
process, as shown in Appendix A. Second, in Sec. IV,
alternative thermostat algorithm is described where the
proximate, rather than actual, constraint forces and torq
are computed to ensure satisfaction of the constant temp
ture constraint at every MD step, again without introduci
additional numerical errors in the process, as shown in
pendix B. As will be seen, these two distinct molecular a
proaches are formally analogous to counterpart atomistic
proaches for imposing holonomic and nonholonom
constraints in MD simulations. In particular, these two m
lecular approaches are analogous to the analytical me
@6,9# ~albeit with a drift correction scheme! and the method
of undetermined parameters@6,7,9#, respectively, for impos-
ing purely holonomic constraints in MD simulations. The
are also analogous to the direct approach@4,5# ~again with a
drift correction scheme! and the undetermined paramete
approach@4,5#, respectively, for imposing additional non
holonomic constraints. In Sec. V, we present numerical
sults from constant kinetic temperature MD simulations o
system of 500 Lennard-Jones rigid molecules (CH2Cl2),
which exhibit the relative performance of all three molecu
thermostat algorithms mentioned above. Finally, a gene
ized Gauss principle of least constraint is derived in App
dix C, to furnish a common framework for the aforeme
tioned previous atomistic methods@4,5# and the presen
molecular approach for incorporating nonholonomic co
straints in MD simulations.

II. EQUATIONS OF MOTION

In the following derivation we make use of two distin
coordinate systems: a laboratory coordinate system with
gin O and a body-fixed principal axes system with originO8
at the body center of mass. Consider a rigid body with m
M and configuration specified by six generalized coordina
qi , whereq15x,q25y,q35z are the Cartesian coordinate
of its center of mass in the laboratory coordinate system,
q45u,q55f,q65c, are the Euler angles giving the orien
tation of its principal axes relative to the laboratory axes. T
Euler angles are defined here according to the commox
convention@20#. Let the rigid body be subject to then non-
holonomic constraints

s l~q,q̇,t !50; l 51, . . . ,n, ~1!

where the dependence on all arguments is generally no
ear. The constrained dynamics of this rigid body can be
scribed by Appell’s equations of motion@21–23#

d

dt S ]T

]q̇i
D 2

]T

]qi
5Qi2(

l 51

n

l l

]s l

]q̇i

5Qi1Qi
c ; i 51, . . . ,6,

~2!

where theQi andQi
c are the generalized applied forces a

generalized constraint forces, respectively,T is the total ki-
netic energy, and thel ’s are Lagrange multipliers. Histori
cally, the atomistic approach for applying nonholonom
constraints in MD simulations exploited@1,2# Gauss’s prin-
ciple of least constraint@17,18,24,25#. To establish a unify-
ing link with the molecular approach presented here, we
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rive in Appendix C a generalized form of Gauss’s principl
and show that it leads to the same equations of motion,
~2!. In principle, then equations of constraints, Eq.~1!, and
the six equations of motion, Eq.~2!, can be used to solve fo
the n Lagrange multipliers and the six generalized coor
nates describing the constrained dynamics. In practice,
would like first to convert Eq.~2! to a form that could serve
as the basis for a MD algorithm. To this end, we adopt
approach similar to that@26# used for transforming from the
Lagrangian to the Newtonian formulation of unconstrain
rigid body dynamics. The total kinetic energyT of the rigid
body can be written as

T5
1

2
M ṙ21Tr~u,f,c!, ~3!

whereTr is the rotational kinetic energy about the center
mass. Inserting Eq.~3! into Eq. ~2!, yields two sets of equa
tions of motion. First, the equations for the translational m
tion of the center of mass are

M r̈5F2(
l 51

n

l l¹̃s l5F1Fc, ~4!

whereF andFc are the applied force and constraint force
the rigid body, respectively, and¹̃[( x̂]/] ẋ1 ŷ]/] ẏ

1 ẑ]/] ż). Note that in the absence of the nonholonomic co
straints in Eq.~1!, Eq.~4! reduces to the familiar equation fo
the center of mass translation of an unconstrained rigid bo
Second, the equations for the rotational motion about
center of mass are

d

dt S ]Tr

]q̇i
D 2

]Tr

]qi
5Qi2(

l 51

n

l l

]s l

]q̇i

5Qi1Qi
c ; i 54, . . . ,6,

~5!

where theQi andQi
c are the applied torques and constra

torques, respectively, associated with the corresponding
ler anglesqi ( i 54, . . . ,6). Thechoice of center of mass a
point of reference in the rigid body allowed us to derive tw
sets of equations of motion, Eqs.~4! and ~5!, generally
coupled through their right-hand sides. Next, the princi
axes property of the body-fixed coordinate system is
ploited to recast Eq.~5! in a form suitable for numerica
implementation. Isolating thec equation~i.e., i 56) of the
set in Eq.~5!, gives

d

dt S ]Tr

]ċ
D 2

]Tr

]c
5Qc2(

l 51

n

l l

]s l

]ċ
5Qc1Qc

c . ~6!

In the principal axes system, the components of the ang
velocity can be expressed as@20#

v15ḟ sinu sinc1 u̇ cosc,

v25ḟ sinu cosc2 u̇ sinc,

v35ḟ cosu1ċ ~7!

and the rotational kinetic energy is given by
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Tr5
1

2 (
i 51

3

I iv i
2 , ~8!

where I 1 , I 2, and I 3 are the principal moments of inerti
relative to the center of mass. From Eq.~7! it follows that
]v1 /]c5v2 and ]v2 /]c52v1. Therefore, by means o
Eqs.~7! and ~8! we can write

]Tr

]c
5(

i 51

3
]Tr

]v i

]v i

]c
5~ I 12I 2!v1v2 ;

]Tr

]ċ
5(

i 51

3
]Tr

]v i

]v i

]ċ
5I 3v3 . ~9!

Using Eq. ~7!, the derivatives of the Euler angles can
expressed in terms of the angular velocities and trigonom
ric functions of the Euler angles. Thus Eq.~1! can be recas
in the more common form

s l~r , ṙ ,u,f,c,v1 ,v2 ,v3 ,t !50; l 51, . . . ,n ~10!

an important example of which is the constant kinetic te
perature or energy constraint discussed in Sec. III. Us
Eqs.~7! and ~10!, we have

Qc
c 52(

l 51

n

l l

]s l

]ċ
52(

l 51

n

l l(
i 51

3
]s l

]v i

]v i

]ċ
52(

l 51

n

l l

]s l

]v3
.

~11!

However, the torque associated with thec Euler angle,Qc ,
is equal@20,26# to the principal axis torqueN3. Therefore,
insertingQc5N3 and Qc

c 5N3
c , together with Eqs.~9! and

~11!, into Eq. ~6!, yields

I 3v̇32~ I 12I 2!v1v25N32(
l 51

n

l l

]s l

]v3
5N31N3

c .

~12!

Because the labeling of a principal axis as the three-axi
arbitrary, Eq.~12! can be cyclically permuted to obtain th
remaining two rotational equations of motion. Hence t
equations of motion describing the rotation of the nonho
nomically constrained rigid body, about its center of ma
are given by

I 1v̇12~ I 22I 3!v2v35N12(
l 51

n

l l

]s l

]v1
5N11N1

c ,

I 2v̇22~ I 32I 1!v1v35N22(
l 51

n

l l

]s l

]v2
5N21N2

c ,

I 3v̇32~ I 12I 2!v1v25N32(
l 51

n

l l

]s l

]v3
5N31N3

c .

~13!

In the absence of the nonholonomic constraints in Eq.~1!,
Eq. ~13! reduces to the well known Euler equations@20# for
the rotation of an unconstrained rigid body about its cente
mass. Equations~4! and ~13! must form the basis of any
t-

-
g

is

e
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,

f

algorithm for MD simulations of rigid molecules under no
holonomic constraints, in the molecular approach. In parti
lar, in the next section, we consider a predictor-correc
quaternion algorithm and a constant temperature constra

III. THERMOSTAT ALGORITHM I

A common and important example of a nonholonom
constraint, both in equilibrium and nonequilibrium MD
simulations, is the constant kinetic temperature constr
@1–3#. As discussed in the Introduction, atomistic algorithm
for implementing this constraint in MD simulations, with o
without additional holonomic constraints~e.g., bond length
constraints, bond-angle constraints!, have been recently de
scribed @4,5#. We now describe the first of two molecula
thermostat algorithms for implementing it within the molec
lar approach for a system of rigid molecules. The extens
of this algorithm to more than a single nonholonomic co
straint and to other desirable forms of nonholonomic co
straints is straightforward.

The basic thermostat algorithm~BTA! described first is
based on a modification of the well known quaternion alg
rithm @1# for rigid body MD simulations. In practice, this
BTA will suffer from numerical drift in the constant kinetic
temperature constraint, as shown in Sec. V, because of
truncation error inherent in the numerical integration of t
equations of motion. Accordingly, we follow the BTA with
correction technique where the center of mass velocities
corrected to ensure that the constant temperature constra
satisfied, within a desired tolerance, at every MD time st
The BTA with this correction technique are referred to c
lectively as thermostat algorithm I~TA1!.

A. Basic thermostat algorithm

Consider a system ofN interacting rigid molecules subjec
to the nonholonomic constant kinetic temperature constr

s~ ṙ ,v1 ,v2 ,v3!5a(
j 51

N FM j ṙ j
21(

i 51

3

I i
j~v i

j !2G2b50,

~14!

where b is a desired constant kinetic temperature,a
51/(6N2Nc)kB , with Nc equal to the total number of con
straints, which is four in the present case, to account
conservation of total linear momentum and Eq.~14!. Clearly,
Eq. ~14! is a special case of Eq.~10!.

In the BTA, the kinetic temperature is initially brought t
a desired value, typically by scaling the velocities@1#, and
then the algorithm attempts to maintain it constant during
MD simulation. Hence the constant kinetic temperature c
straint is implemented instead simply by means of a cons
kinetic energy constraint

s8~ ṙ ,v1 ,v2 ,v3!5(
j 51

N F1

2
M j ṙ j

21
1

2 (
i 51

3

I i
j~v i

j !2G2b850.

~15!

From Eq.~4!, the center of mass equations of motion are

M j r̈ j5Fj2lM j ṙ j5Fj1Fj
c; j 51, . . . ,N ~16!
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and from Eq.~13!, the equations for the rotation about th
centers of mass are

I 1
j v̇1

j 2~ I 2
j 2I 3

j !v2
j v3

j 5N1
j 2lI 1

j v1
j 5N1

j 1~N1
j !c,

I 2
j v̇2

j 2~ I 3
j 2I 1

j !v1
j v3

j 5N2
j 2lI 2

j v2
j 5N2

j 1~N2
j !c,

I 3
j v̇3

j 2~ I 1
j 2I 2

j !v1
j v2

j 5N3
j 2lI 3

j v3
j

5N3
j 1~N3

j !c; j 51, . . . ,N.

~17!

The numerical solution of these equations of motion is p
formed in two steps. First, the nonholonomic constra
forces, Fc, and constraint torquesN1

c , N2
c , and N3

c , are
evaluated. Second, the equations of motion are integr
numerically using the potential energy forces and torq
together with the constraint forces and torques. The com
tation of the constraint forces and torques requires comp
tion of the Lagrange multiplierl. To this end, differentiating
Eq. ~15! with respect to time and inserting into the resulti
equation the expression forr̈ j from Eq. ~16! and the expres-
sions forv̇1

j , v̇2
j , v̇3

j from Eq. ~17!, gives

(
j 51

N

@Fj2lM j ṙ j #• ṙ j1v1
j @N1

j 2lI 1
j v1

j 1~ I 2
j 2I 3

j !v2
j v3

j #

1v2
j @N2

j 2lI 2
j v2

j 1~ I 3
j 2I 1

j !v1
j v3

j #

1v3
j @N3

j 2lI 3
j v3

j 1~ I 1
j 2I 2

j !v1
j v2

j #
e
b

he
o
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o
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50. ~18!

Solving Eq.~18! for l yields

l5

(
j 51

N FFj• ṙ j1(
i 51

3

v i
jNi

j G
(
j 51

N FM j ṙ j
21(

i 51

3

I i
j~v i

j !2G ~19!

By means of Eq.~19!, the constraint forces,Fc, and con-
straint torques,N1

c , N2
c andN3

c , can now be computed.
For the numerical integration of the constrained equati

of motion, we adopt the predictor-corrector quaternion alg
rithm @1,10,11,13# commonly used in~unconstrained! rigid
body MD simulations. The molecular orientation is given
terms of four quaternion parametersqi ( i 50, . . . ,3) subject
to the normalization conditionq0

21q1
21q2

21q3
251. To inte-

grate the equations of motion, the center of mass positio
the quaternions, and the angular velocities~and all their ap-
propriate time derivatives! are first predicted using the store
values of these quantities and their required time derivativ
The quaternions are then typically renormalized to prese
orthogonality of the rotation matrix for the correspondin
molecule
A5S q0
21q1

22q2
22q3

2 2~q1q21q0q3! 2~q1q32q0q2!

2~q1q22q0q3! q0
22q1

21q2
22q3

2 2~q2q31q0q1!

2~q1q31q0q2! 2~q2q32q0q1! q0
22q1

22q2
21q3

2
D . ~20!
r
-
ua-

.
le
-
f a
ter
Multiplication of the principal axes components of th
atomic positions with respect to the centers of mass,
A21(5AT) yields the laboratory frame components of t
predicted atomic positions with respect to the centers
mass. These are then added to the corresponding pred
center of mass positions to give the predicted atomic p
tions in the laboratory frame. Subsequently, the force
each atom is computed and the total forceF and total torque
on each molecule are evaluated in the laboratory frame.
laboratory frame components of the total torque on e
molecule are then multiplied byA to yield the necessary
corresponding principal axes torquesN1 , N2, andN3. Up to
this point, the quaternion scheme described is simply
standard one. In Sec. IV, we will refer to this stage of t
BTA as stage A. Now, however, the undetermined multipl
l is evaluated according to Eq.~19!, and the constrain
forcesFc and constraint torquesN1

c , N2
c , andN3

c are com-
puted. The constraint forcesFc and potential energy forcesF
are used in the corrector stage of the algorithm, based on
y

f
ted
i-
n

he
h

e

r

q.

~16!, and the constraint torquesN1
c , N2

c , andN3
c , and poten-

tial energy torquesN1 , N2, andN3, are used in the correcto
stage, according to Eq.~17!. Finally, the quaternions are cor
rected for each molecule according to the kinematic eq
tions

S q̇0

q̇1

q̇2

q̇3

D 5
1

2 S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D S 0

v1

v2

v3

D . ~21!

Note that through theirl coupling, the corrector stage of Eq
~16! depends now explicitly on rotational quantities, whi
the corrector stage of Eq.~17! depends explicitly on transla
tional ones. In Sec. V, we use a common combination o
third order Gear predictor-corrector for integrating the cen
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of mass equations of motion and a fourth order G
predictor-corrector for the quaternions and principal angu
velocities.

B. Drift correction technique

As mentioned before, when the above BTA is applied
MD simulations, the constant kinetic temperature constra
Eq. ~14!, diverges progressively from its constraint valueb.
Therefore, we describe next a technique for use following
BTA, which eliminates the numerical drift in the constrai
at every MD time step. A truncated Taylor expansion of t
center of mass velocities from the BTA, can be written a

ṙ i~ t01dt !5 ṙ i~ t0!1 r̈ i~ t0!dt

5 ṙ i~ t0!1
dt

M i
Fi~ t0!2dtl~ t0! ṙ i~ t0!;

~ i 51, . . . ,N!, ~22!

where use was made of Eq.~16!. Introducing an additiona
term into Eq.~22!, containing an unknowng, gives

ṙ i~ t01dt,g!5 ṙ i~ t0!1
dt

M i
Fi~ t0!2dtl~ t0! ṙ i~ t0!2dtg ṙ i~ t0!

5 ṙ i~ t01dt !2dtg ṙ i~ t0!; ~ i 51, . . . ,N!,

~23!

whereg is required to have a value such that the constra
Eq. ~14!, is satisfied. Therefore Eq.~14! can be written as

s„ṙ ~ t01dt,g!,v1 ,v2 ,v3…

5s„ṙ ~ t01dt !2dtg ṙ ~ t0!,v1 ,v2 ,v3…50

~24!
i-
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which is quadratic in the unknowng, and wherev1 , v2,
andv3 are obtained from the BTA, of course. The solutiong
is substituted into Eq.~23! to provide the final constrained
center of mass velocities. It is most convenient computati
ally to solve Eq.~24! iteratively for g, essentially by New-
ton’s method. To this end, consider a certain iteration, d
the g notation fromṙ i(t01dt,g) in Eq. ~23!, and letṙold(t0
1dt) include all changes made up to this point in the ite
tion. From Eq.~23!, the new center of mass velocities o
tained in the current iteration can be written as

ṙ i
new~ t01dt !5 ṙ i

old~ t01dt !2dtgnewṙ i~ t0!; ~ i 51, . . . ,N!,
~25!

where the starting value ofṙ i
old(t01dt) is ṙ i(t01dt) in Eq.

~23!, the center of mass velocities from the BTA, of cours
Taylor expandings„ṙnew(t01dt),v1 ,v2 ,v3… about ṙold(t0
1dt) gives

s„ṙold~ t01dt !2dtgnewṙ ~ t0!,v1 ,v2 ,v3…

5s„ṙold~ t01dt !,v1 ,v2 ,v3…

2dtgnew2a(
i 51

N

Mi ṙ i
old~ t01dt !• ṙ i~ t0!1•••50

~26!

where the quadratic term is not shown explicitly. Neglecti
the nonlinear term and solving forgnew yields

gnew5@dt#21
s„ṙold~ t01dt !,v1 ,v2 ,v3…

2a(
i 51

N

Mi ṙ i
old~ t01dt !• ṙ i~ t0!

. ~27!

Inserting Eq.~27! into Eq. ~25! gives
ṙ i
new~ t01dt !5 ṙ i

old~ t01dt !2S a(
j 51

N H M j@ ṙ j
old~ t01dt !#21(

i 51

3

I i
j~v i

j !2J 2b

2a(
i 51

N

Mi ṙ i
old~ t01dt !• ṙ i~ t0!

D ṙ i~ t0! ~ i 51, . . . ,N!. ~28!
ual

ere
nu-

sat-
B.
II

aint
Immediately following the BTA, the center of mass veloc
ties are iterated according to Eq.~28! until the numerator in
parentheses, representing the current value of the const
function, is below a desired tolerancet. It is shown in Ap-
pendix A that, owing to the special form of the addition
correction term introduced in Eq.~23!, this correction tech-
nique, and hence the TA1, does not introduce into the ce
of mass velocities, errors of an order in the time step low
than already present in the BTA. Note in addition that t
correction does not affect the BTA values of the angu
velocities and, hence, of the quaternions.
int

l

er
r

s
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IV. THERMOSTAT ALGORITHM II

In the TA1 described in the previous section, the act
constraint forces,Fc, and actual constraint torques,N1

c , N2
c ,

andN3
c , were computeda priori at stage A of the BTA and

used in the integration of the equations of motion, Eqs.~16!
and ~17!. The constraint forces on the centers of mass w
subsequently corrected, or approximated, to eliminate the
merical drift in the temperature constraint and ensure its
isfaction at every MD time step, as described in Sec. III
We now describe an alternative thermostat algorithm
~TA2! where the approximate, rather than actual, constr
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forces and constraint torques are computeda posteriori to
ensure satisfaction of the temperature constraint at every
step. It is shown in Appendix B that the TA2 does not intr
duce, into the center of mass velocities or angular velocit
errors of an order in the time step lower than already pres
in the BTA. A comparison of the advantages of TA1 vers
those of TA2 is given in Sec. V.

A truncated Taylor expansion of the center of mass
locities from the BTA is given by

ṙ i~ t01dt !5 ṙ i~ t0!1 r̈ i~ t0!dt

5 ṙ i~ t0!1
dt

M i
Fi~ t0!2dtl~ t0! ṙ i~ t0!

5 ṙ i8~ t01dt !1d ṙ i~ t01dt ! ~ i 51, . . . ,N!,

~29!

where the unconstrained center of mass velocityṙ i8(t01dt)
denotes the sum of the first two terms. Similarly, a trunca
Taylor expansion of the angular velocities from the BTA
given by

v1
j ~ t01dt !5v1

j ~ t0!1v̇1
j ~ t0!dt

5v1
j ~ t0!1

dt

I 1
j

@~ I 2
j 2I 3

j !v2
j ~ t0!v3

j ~ t0!

1N1
j ~ t0!#2dtl~ t0!v1

j ~ t0!

5v18
j~ t01dt !1dv1

j ~ t01dt ! ~ j 51, . . . ,N!,

~30!

where the unconstrained angular velocityv18
j (t01dt) de-

notes the sum of the first two terms, and similar equati
hold for v2

j and v3
j . In the BTA, the constrained center o

mass velocities,ṙ i(t01dt), and constrained angular veloc
ties, v i

j (t01dt), were evaluated by first computingl and
then numerically integrating the equations of motion.
stead, we now compute theṙ i(t01dt) andv i

j (t01dt) from
the two contributions in Eqs.~29! and ~30!, respectively.

First, the ṙ i8(t01dt) and v i8
j (t01dt) are evaluated by

numerically integrating the equations of motion using on
the potential energy forces and torques at stage A of
BTA. Second, thed ṙ i anddv i

j are chosen to ensure satisfa
tion of the constraint at every MD time step. To this e
l(t0) is replaced by an undetermined parameter,h, and Eqs.
~29! and ~30! become
D
-
s,
nt
s

-

d

s

-

e

ṙ i~ t01dt !5 ṙ i8~ t01dt !2dth ṙ i~ t0! ~ i 51, . . . ,N!
~31!

and

v i
j~ t01dt !5v i8

j~ t01dt !2dthv i
j~ t0!

~ i 51, . . . ,3; j 51, . . . ,N!, ~32!

respectively, whereh is required to have a value such th
Eq. ~14! is satisfied. Hence Eq.~14! can be written as

s„ṙ 8~ t01dt !2dth ṙ ~ t0!,v i8~ t01dt !2dthv i~ t0!…50,
~33!

which is quadratic in the unknownh. The solutionh is
substituted into Eqs.~31! and~32! to provide the constrained
center of mass velocities and constrained angular veloc
from the TA2. As in Sec. III B, it is most convenient com
putationally to solve Eq.~33! iteratively for h. Again, with
ṙold(t01dt) including all changes made up to this point
the iteration, the new center of mass velocities obtained
the current iteration can be written as

ṙ i
new~ t01dt !5 ṙ i

old~ t01dt !2dthnewṙ i~ t0! ~ i 51, . . . ,N!,
~34!

where the starting value ofṙ i
old(t01dt) is ṙ i8(t01dt). Simi-

larly, the new angular velocities obtained in the current ite
tion can be written as

v i
j ,new~ t01dt !5v i

j ,old~ t01dt !2dthnewv i
j~ t0!

~ i 51, . . . ,3; j 51, . . . ,N!, ~35!

where the starting value ofv i
j ,old(t01dt) is v i8

j (t01dt).

Taylor expanding s„ṙnew(t01dt),v i
new(t01dt)… about

ṙold(t01dt) andv i
old(t01dt) gives

s„ṙold~ t01dt !2dthnewṙ ~ t0!,v i
old~ t01dt !2dthnewv i~ t0!…

5s„ṙold~ t01dt !,v i
old~ t01dt !…2dthnew2a

3(
i 51

N

Mi ṙ i
old~ t01dt !• ṙ i~ t0!2dthnew2a

3(
j 51

N

(
i 51

3

I i
jv i

j ,old~ t01dt !v i
j~ t0!1•••50, ~36!

where the quadratic term is not shown explicitly. Neglecti
the nonlinear term and solving forhnew yields
hnew5@dt#21
s„ṙold~ t01dt !,v i

old~ t01dt !…

2a(
j 51

N FM j ṙ j
old~ t01dt !• ṙ j~ t0!1(

i 51

3

I i
jv i

j ,old~ t01dt !v i
j~ t0!G . ~37!

Inserting Eq.~37! into Eq. ~34! gives
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ṙ i
new~ t01dt !5 ṙ i

old~ t01dt !2S a(
j 51

N H M j@ ṙ j
old~ t01dt !#21(

i 51

3

I i
j@v i

j ,old~ t01dt !#2J 2b

2a(
j 51

N FM j ṙ j
old~ t01dt !• ṙ j~ t0!1(

i 51

3

I i
jv i

j ,old~ t01dt !v i
j~ t0!G D ṙ i~ t0! ~ i 51, . . . ,N!

~38!

and into Eq.~35! gives

v i
j ,new~ t01dt !5v i

j ,old~ t01dt !2S a(
j 51

N H M j@ ṙ j
old~ t01dt !#21(

i 51

3

I i
j@v i

j ,old~ t01dt !#2J 2b

2a(
j 51

N FM j ṙ j
old~ t01dt !• ṙ j~ t0!1(

i 51

3

I i
jv i

j ,old~ t01dt !v i
j~ t0!G D v i

j~ t0!

~ i 51, . . . ,3; j 51, . . . ,N!. ~39!
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The center of mass velocities and angular velocities are
ated according to Eqs.~38! and ~39!, respectively, until the
numerator in parentheses, representing the current valu
the constraint function, is below a desired tolerancet. It is
shown in Appendix B that the center of mass velocity a
angular velocity trajectories from the TA2 are numerica
equivalent to the corresponding trajectories from the BT
and hence, in light of the conclusion of Appendix A, a
numerically equivalent to the corresponding trajectories fr
the TA1 also. After the constrained center of mass veloci
and angular velocities are obtained as described above
quaternions are corrected based on Eq.~21!, as the final step
in TA2.

V. NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented here to exhibit the pr
erties of the molecular thermostat algorithms TA1 and T
and their relative performance. Constant energy MD simu
tions and constant kinetic temperature MD simulations w
performed on a system of 500 rigid molecules interacting
a five-site Lennard-Jones 12-6 potential. Parameter va
were chosen as those of methylene chloride, CH2Cl2, with
geometry and potential parameters obtained from Ref.@27#.
The five force sites are identical with the atomic positions
the molecule, and although a methylene chloride molecul
a nearly symmetric top molecule, strictly speaking its th
principal moments of inertia,I 1 , I 2, and I 3 are distinct. All
simulations were performed with time stepdt51 fs. Peri-
odic boundary conditions were imposed and a potential
off radius equal to half the box length was used. As co
monly done@1#, a third order Gear predictor-corrector wa
used for integrating the center of mass equations of mot
while a fourth order Gear predictor-corrector was adopted
the quaternions and principal angular velocities. The c
stant energy MD simulations were carried out at a density
1.326 g/cm3 and temperature of 293 K. The constant kine
temperature simulations were performed at the same den
while the kinetic temperature was maintained fixed at 293
using the TA1 or TA2.

First, to perform constant energy rigid body MD simul
tions at a state point specified typically by the density a
r-

of

d

,

s
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e
a
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e

t-
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r
-
f

ity,

d

temperature, it is common practice to maintain constant
netic temperature during equilibration by scaling the velo
ties by ~desired temperature/current kinetic temperature! 1/2,
say at every MD step. However, because temperature is n
fixed parameter in constant energy MD simulations, the s
point reached at the end of equilibration is typically on
close to the desired one, often frustrating reproduction
independently obtained results, for comparison purposes
a more effective alternative to the crude velocity scali
technique, either TA1 or TA2 can be used to fix the kine
temperature during equilibration, with the tolerancet ad-
justed for approaching a particular state point as closely
desired at the end of equilibration, as illustrated in Figs
and 2 for the TA1 and TA2, respectively. For the TA1, th
average number of iterations per MD step over the equilib

FIG. 1. Thermodynamic temperature vs time step in cons
energy MD simulations of 500 Lennard-Jones rigid molecu
(CH2Cl2), with 2000 equilibration steps and 20 000 producti
steps. The desired temperature is 293 K. At the end of equilibra
the temperature accumulator is reset to zero. The bottom curv
obtained with velocity scaling at every step during the equilibrat
phase. The other curves are obtained using TA1 during equili
tion. Starting with the lowest curve and counting up, the tolera
values used aret50.1, 0.7, and 0.8, respectively. Of these valu
the optimal one for attaining the desired set point temperature,
ing TA1, is in this caset50.7.
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tion period was 0.13, 0.013, and 0.0065 fort50.1, 0.7, and
0.8, respectively. For the TA2, the average number of ite
tions per MD step over the equilibration period was 61
43.1, and 33.8 fort50.1, 0.2, and 0.3, respectively. Th
reason for the large difference between the convergence
of TA1 and TA2 is explained shortly.

The BTA attempts to maintain a given temperature c
stant. As noted before, this temperature will drift howev
because of numerical integration error. The correction te
nique in TA1 ensures that the temperature remains at
desired value at every step of the simulation. Because
correction technique is a linearized expansion-based sch
it requires relatively small corrections to converge. Hence
the first step only of equilibration with TA1, the kinetic tem
perature is brought to, or near, the desired value using ve
ity scaling. The remainder of the equilibration is perform
solely with TA1. Similarly, the TA2 is a linearized
expansion-based algorithm, hence it requires small cor
tions to converge. Therefore in the first step only of equ
bration with TA2, the kinetic temperature is also brought
or near, the desired value using velocity scaling, and
remainder of the equilibration is performed solely with TA

Second, we perform constant kinetic temperature sim
tions with the BTA, TA1, and TA2, and compare constra
conservation results. Figure 3 compares kinetic temperat
in constant kinetic temperature simulations using TA1, TA
and BTA. A tolerancet50.01 was used for both TA1 an
TA2. In the simulations with TA1 and TA2, the kinetic tem
perature was fixed during equilibration using also TA1 a
TA2, respectively, as described above, whereas velocity s
ing was used for this purpose in the simulation with BT
For the above value of the tolerance, the average numbe
iterations per MD step over the entire production period w
3 for TA1 and 174 for TA2. Figures 4 and 5 show compa
sons on an expanded scale between the kinetic temper

FIG. 2. Thermodynamic temperature vs time step in cons
energy MD simulations of 500 Lennard-Jones rigid molecu
(CH2Cl2), with 2000 equilibration steps and 20 000 producti
steps. The desired temperature is 293 K. At the end of equilibra
the temperature accumulator is reset to zero. The bottom curv
obtained with velocity scaling at every step during the equilibrat
phase. The other curves are obtained using TA2 during equili
tion. Starting with the lowest curve and counting up, the tolera
values used aret50.1, 0.2, and 0.3, respectively. Of these valu
the optimal one for attaining the desired set point temperature,
ing TA2, is in this caset50.2.
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from the simulation with BTA and the kinetic temperatur
from the simulations with TA1 and TA2, respectively.

Figures 3, 4, and 5 show clearly that the BTA by itse
suffers from numerical drift in the constant kinetic tempe
ture constraint, hence the need for the two more accu
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FIG. 3. Kinetic temperature vs time step for four MD simul
tions of 500 Lennard-Jones rigid molecules (CH2Cl2), with 2000
equilibration steps and 20 000 production steps in each. The
overlapping horizontal lines are from constant kinetic temperat
MD simulations using TA1 and TA2, respectively, for the enti
simulation runs, with desired kinetic temperature of 293 K a
tolerance valuet50.01 for both simulations. The drifting curve i
the neighborhood of the horizontal line is from a constant kine
temperature MD simulation using the BTA during production a
velocity scaling at every step during equilibration, with desired
netic temperature of 293 K also. The background curve is from
constant energy MD simulation with desired~thermodynamic! tem-
perature of 293 K, where the kinetic temperature is shown ev
100 steps only to prevent cluttering. Velocity scaling is also use
every step to fix the kinetic temperature during equilibration of t
simulation.

FIG. 4. Kinetic temperature vs time step for two constant kine
temperature MD simulations of 500 Lennard-Jones rigid molecu
(CH2Cl2), with 2000 equilibration steps and 20 000 producti
steps, and desired kinetic temperature of 293 K. The horizontal
is from a constant kinetic temperature MD simulation using T
for the entire simulation run with tolerance valuet50.01. The
drifting curve is from a constant kinetic temperature MD simulati
using the BTA during production and velocity scaling at every s
during equilibration.
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thermostat algorithms, TA1 and TA2. From the above res
it is clear that TA1 requires in general fewer iterations
converge within a desired tolerancet than does TA2. This
faster convergence of the TA1 can be attributed to the
that the iterative correction in the TA1 is performed on t
already constrained motion~i.e., through the BTA!, while the
iterative correction in the TA2 is performed on unco
strained motion, as described in Secs. III and IV, resp
tively. On the other hand, TA2 is easier to implement th
TA1 for that same reason. Figure 6 shows the ratios of
translational to rotational kinetic energies for the two sim
lations using TA1 and TA2, respectively. The average ra
over the entire production period was 0.99 for both simu
tions.

FIG. 5. Kinetic temperature vs time step for two constant kine
temperature MD simulations of 500 Lennard-Jones rigid molecu
(CH2Cl2), with 2000 equilibration steps and 20 000 producti
steps, and desired kinetic temperature of 293 K. The horizontal
is from a constant kinetic temperature MD simulation using T
for the entire simulation run with tolerance valuet50.01, where
the kinetic temperature is shown every 100 steps only to pre
cluttering. The drifting curve is from a constant kinetic temperat
MD simulation using the BTA during production and velocity sca
ing at every step during equilibration.

FIG. 6. Ratio of translational to rotational kinetic energies
the constant kinetic temperature simulations performed with
TA1 ~solid line! and TA2 ~dashed line!. Ratios are shown only for
the last 5000 steps of the simulations to avoid cluttering.
ts

ct

c-
n
e
-
o
-

VI. CONCLUSION

In this article, generalized equations were derived for
motion of a rigid body under general nonholonomic co
straints. These equations were used to develop two molec
thermostat algorithms TA1 and TA2, for constant kine
temperature MD simulations of rigid molecules. Resu
from MD simulations of a system of methylene chlorid
rigid molecules exhibited the good performance of both T
and TA2 and their relative advantages. The molecular al
rithms presented here complement atomistic constraint a
rithms described previously@4,5#. In the context of these
atomistic methods, the TA1 is the molecular approach co
terpart of the direct method@4,5#, albeit with a drift correc-
tion scheme, and the TA2 is the analog of the GSHAK
@4,5# algorithm. Finally, a generalized Gauss principle
least constraint was derived to provide a formal link betwe
these atomistic and molecular approaches.
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APPENDIX A: ERROR ANALYSIS FOR TA1

Any technique designed to eliminate or reduce within
desired tolerance the numerical constraint drift must not
troduce consequently additional numerical errors~i.e., of
lower order in the time-step! to those in the integration algo
rithm and the original method~e.g., the BTA!. We provide
here an error analysis for the TA1, which shows that it do
not introduce errors into the center of mass velocities ad
tional to those present in the BTA.

The center of mass velocities generated by the BTA
be represented by the Taylor expansion Eq.~22!. The last
term in Eq. ~22! containsl(t0) and the highest powerdt.
Assuming the integration algorithm has an error in the cen
of mass velocities ofO(dtm11), the equivalence of the Tay
lor expansion and the integration algorithm implies that
highest term in the Taylor expansion is ofO(dtm), hence
dtl(t0) is of O(dtm). Thereforel(t0) is of O(dtm21), or

l~ t0!5b1O~dtm!, ~A1!

whereb is some estimated or approximated value ofl(t0).
Comparison of Eq.~22! with Eq. ~23! shows that the drift
correction technique involves the approximation ofl(t0) by
@l(t0)1g# in Eq. ~23!. Accordingly, replacing b by
@l(t0)1g#, Eq. ~A1! becomes

@l~ t0!1g#5l~ t0!1O~dtm!. ~A2!

Inserting Eq.~A2! back into Eq.~23!, the final constrained
center of mass velocities given by the correction techniq
can be written as
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ṙ i~ t01dt,g!5 ṙ i~ t0!1
dt

M i
Fi~ t0!2dtl~ t0! ṙ i~ t0!

1O~dtm11! ~ i 51, . . . ,N!. ~A3!

By comparing Eq.~A3! with Eq. ~22!, we can write

ṙ i@TA1#5 ṙ i@BTA#1O~dtm11! ~ i 51, . . . ,N!.
~A4!

On the other hand, from the assumedO(dtm11) of error in
the center of mass velocities in the BTA, we can write

ṙ i@BTA#5 ṙ i@exact#~ t01dt !1O~dtm11!, ~A5!

where ṙ i@exact# is the trajectory obtained ideally from a
exact analytical solution of the equations of motion. Fina
inserting Eq.~A5! into Eq. ~A4! gives

ṙ i@TA1#5 ṙ i@exact#~ t01dt !1O~dtm11!. ~A6!

Equation~A4! shows that the correction technique, or TA
introduces no additional errors into the center of mass vel
ties of the BTA. Equivalently, comparison of Eq.~A6! with
Eq. ~A5! shows that the velocity trajectories from the BT
and the TA1 are numerically equivalent, where in the TA
however, the constant kinetic temperature constraint is s
fied at every MD time step.

APPENDIX B: ERROR ANALYSIS FOR TA2

We provide here an error analysis for the TA2, whi
shows that it does not introduce errors into the center of m
velocities or angular velocities additional to those presen
the BTA. The center of mass velocities and angular velo
ties generated by the BTA can be represented by the Ta
expansions Eqs.~29! and~30!, respectively. The last term in
each of these equations containsl(t0) and the highest powe
dt. Assuming the integration algorithm has an error in t
center of mass velocities ofO(dtm11) and an error in the
angular velocities ofO(dtm811), the equivalence of the Tay
lor expansions and the integration algorithm implies that
highest term in the Taylor expansions is ofO(dtm) and
O(dtm8), respectively. Hence, in Eq.~29!, dtl(t0) is of
O(dtm) and thereforel(t0) is of O(dtm21), or

l~ t0!5b1O~dtm! ~B1!

and, in Eq.~30!, dtl(t0) is of O(dtm8) and thereforel(t0) is
of O(dtm821), or

l~ t0!5b1O~dtm8!, ~B2!

whereb is some estimated or approximated value ofl(t0).
In TA2, l(t0) is replaced byh, as described in Sec. IV
Accordingly, replacingb by h, Eq. ~B1! becomes

h5l~ t0!1O~dtm! ~B3!

and Eq.~B2! leads to

h5l~ t0!1O~dtm8!. ~B4!
,
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,
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Inserting Eq.~B3! back into Eq.~31!, the constrained cente
of mass velocities given by TA2 can be written as

ṙ i~ t01dt !5 ṙ i8~ t01dt !2dtl~ t0! ṙ i~ t0!1O~dtm11!

~ i 51, . . . ,N!. ~B5!

Inserting Eq.~B4! back into Eq.~32!, the constrained angula
velocities given by TA2 can be written as

v i
j~ t01dt !5v i8

j~ t01dt !2dtl~ t0!v i
j~ t0!1O~dtm811!

~ i 51, . . . ,3; j 51, . . . ,N!. ~B6!

Comparing Eqs.~B5! and ~B6! with Eqs. ~29! and ~30!, re-
spectively, we can write

ṙ i@TA2#5 ṙ i@BTA#1O~dtm11! ~ i 51, . . . ,N!,

v i
j@TA2#5v i

j@BTA#1O~dtm811!

~ i 51, . . . ,3; j 51, . . . ,N!. ~B7!

On the other hand, from the assumedO(dtm11) and
O(dtm811) of errors in the center of mass velocities a
angular velocities in the BTA, respectively, we can write

ṙ i@BTA#5 ṙ i@exact#1O~dtm11! ~ i 51, . . . ,N!,

v i
j@BTA#5v i

j@exact#1O~dtm811!

~ i 51, . . . ,3; j 51, . . . ,N!, ~B8!

where ṙ i@exact# and v i
j@exact# are the velocities obtained

ideally from an exact analytical solution of the constrain
equations of motion. Finally, inserting Eq.~B8! into Eq.~B7!
gives

ṙ i@TA2#5 ṙ i@exact#1O~dtm11! ~ i 51, . . . ,N!,

v i
j@TA2#5v i

j@exact#1O~dtm811!

~ i 51, . . . ,3; j 51, . . . ,N!. ~B9!

Comparison of Eq.~B9! with Eq. ~B8! shows that the veloc-
ity trajectories from the BTA and from the TA2 are nume
cally equivalent, where in the TA2, however, the consta
kinetic temperature constraint is satisfied at every MD ti
step.

APPENDIX C: GENERALIZED GAUSS PRINCIPLE

As mentioned before, the atomistic approach for apply
nonholonomic constraints in MD simulations exploited in
tially Gauss’s principle of least constraint. To establish
common theoretical framework for the molecular approa
constraint algorithms, such as the BTA, TA1, and TA2 i
troduced in this work, and the atomistic approach algorith
@4,5#, such as GSHAKE and the direct method, we der
here a generalized form of Gauss’s principle, and then sh
that it leads to the same equations of motion, Eq.~2!, used to
formulate the present molecular approach.

For a system ofN particles with massesmi , Gauss’s prin-
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ciple of least constraint@17,18,24,25#

dF(
i 51

N mi
21

2
~Fi2mi r̈ i !

2G50, dr ,d ṙ50 ~C1!

states that at any point along the actual path of the motio
(r , ṙ , r̈ ) space, the bracketed quantity is minimum with r
spect to variations in the accelerations satisfying any c
straints present, keeping the coordinates and velocities fi
The system ofN particles is assumed to be subject in gene
to both holonomic and nonholonomic constraints. Altern
tively, Eq. ~C1! can be written in terms of the constrai
forces

dF(
i 51

N mi
21

2
~Fi

c!2G50, dr ,d ṙ50. ~C2!

Carrying out the variation, the left side of Eq.~C1! gives

dF(
i 51

N
1

2mi
~Fi2mi r̈ i !

2G5(
i 51

N
1

mi
~Fi2mi r̈ i !•d~Fi2mi r̈ i !

52(
i 51

N

~Fi2mi r̈ i !•d r̈ i ,

dr ,d ṙ50, ~C3!

where the last equality follows from the vanishing of t
variation of the applied forcesFi(r , ṙ ,t), at fixed coordinates
and velocities

dFi5(
j 51

N

dr j•
]Fi

]r j
1(

j 51

N

d ṙ j•
]Fi

] ṙ j

50, dr ,d ṙ50.

~C4!

Using Eq. ~C3!, Gauss’s principle, Eq.~C1!, assumes the
equivalent form

(
i 51

N

~Fi2mi r̈ i !•d r̈ i50, dr ,d ṙ50. ~C5!

We wish first to recast Eq.~C5! in terms of generalized co
ordinates. To this end, we effect a point transformation t
set ofg generalized coordinatesq

r i5r i~q1 , . . . ,qg ,t !, i 51, . . . ,N. ~C6!

In generalg<3N. For example, if no holonomic constrain
are incorporated implicitly in the point transformation, E
~C6!, theng53N. On the other hand, in the case of a rig
body g56. From Eq.~C6! it follows that

dr i5(
j 51

g
]r i

]qj
dqj ; i 51, . . . ,N. ~C7!

Differentiating Eq. ~C7! twice with respect to time and
evaluating the variation at fixed coordinates and velocit
gives
in
-
-
d.
l
-

a

s,

d r̈ i5(
j 51

g
]r i

]qj
dq̈ j , dq,dq̇50. ~C8!

Inserting Eq.~C8! into Eq. ~C5! yields

(
j 51

g F(
i 51

N S Fi•
]r i

]qj
2mi r̈ i•

]r i

]qj
D Gdq̈ j50, dq,dq̇50.

~C9!

The common quantity in brackets is easily recast@20# in
generalized coordinates and Eq.~C9! then becomes

(
j 51

g F d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj Gdq̈ j50, dq,dq̇50,

~C10!

where theQj are the generalized applied forces andT is the
kinetic energy. Equation~C10! is the desired generalized co
ordinates form of Eq.~C5!. We now recast Eq.~C10! in the
form of a minimum principle. For the kinetic energ
T(q,q̇,t) we can write

d

dt S ]T

]q̇ j
D 5(

i 51

g
]

]qi
S ]T

]q̇ j
D q̇i1(

i 51

g
]

]q̇i
S ]T

]q̇ j
D q̈i1

]

]t S ]T

]q̇ j
D .

~C11!

Evaluating the variation of Eq.~C11! at fixed coordinates
and velocities gives

dF d

dt S ]T

]q̇ j
D G5(

i 51

g S ]2T

]q̇ j]q̇i
D dq̈i

5(
i 51

g

Mi j ~q,t !dq̈i , dq,dq̇50, ~C12!

whereMi j is evidently a symmetric matrix. Solving fordq̈i
yields

dq̈i5(
j 51

g

Mi j
21dF d

dt S ]T

]q̇ j
D G , dq,dq̇50. ~C13!

By means of Eq.~C13!, the left side of Eq.~C10! can be
written as

(
i 51

g F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi Gdq̈i5(

i 51

g F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi G

3H (
j 51

g

Mi j
21dF d

dt S ]T

]q̇ j
D G J ,

dq,dq̇50. ~C14!

However,

dF d

dt S ]T

]q̇ j
D G5dF d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj G , dq,dq̇50,

~C15!
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because the variations of]T/]qj andQj (q,q̇,t) both vanish
at fixed coordinates and velocities. Inserting Eq.~C15! into
Eq. ~C14! gives

(
i 51

g F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi Gdq̈i

5 (
i , j 51

g

Mi j
21F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi G

3dF d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj G

5 (
i , j 51

g Mi j
21

2
dH F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi G

3F d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj G J

5dH (
i , j 51

g Mi j
21

2 F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi G

3F d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj G J , dq,dq̇50,

~C16!

where use was made of the symmetry ofMi j
21(q,t) in the

second equality, and of its vanishing variation at fixed co
dinates and velocities in the last equality. Finally, combin
Eq. ~C16! with Eq. ~C10! leads to

dH (
i , j 51

g Mi j
21

2 F d

dt S ]T

]q̇i
D 2

]T

]qi
2Qi G

3F d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj G J 50, dq,dq̇50

~C17!

which states that at any point along the actual path of
motion in (q,q̇,q̈)-space, the quantity in curly brackets min
mum with respect to variations in the generalized accele
n

pu
-

e

a-

tions satisfying any constraints present, keeping the gene
ized coordinates and velocities fixed. Eq.~C17! is a
generalized form of Gauss’s principle of least constra
Recognizing that the quantities in brackets are equal to
generalized constraint forces, Eq.~C17! can also be written
in the alternative compact form

dF (
i , j 51

g Mi j
21

2
Qi

cQj
cG50, dq,dq̇50. ~C18!

In the case of Cartesian coordinates we haveMi j 5mid i j ,
and Eqs.~C17! and ~C18! reduce to the forms of Eqs.~C1!
and ~C2!, respectively.

We now consider the rigid body of Sec. II and show th
the same equations of motion, Eq.~2!, follow from an appli-
cation of the generalized Gauss principle, Eq.~C17!. Carry-
ing out the variation in Eq.~C17! ~with g56! and retracing
the steps above leads back to Eq.~C10!. Differentiating Eq.
~1! with respect to time gives

ds l

dt
5(

j 51

6
]s l

]qj
q̇j1(

j 51

6
]s l

]q̇ j

q̈ j1
]s l

]t
50, l 51, . . . ,n

~C19!

the variation of which at fixed coordinates and velociti
leads to

dS ds l

dt D5(
j 51

6
]s l

]q̇ j

dq̈ j50, dq,dq̇50, l 51, . . . ,n.

~C20!

From the statement of the generalized Gauss principle, E
~C10! and ~C20! hold simultaneously. Accordingly, multi
plying each of then constraints in Eq.~C20! by a corre-
sponding Lagrange multiplier, summing over the constrain
and adding the resulting sum to Eq.~C10!, gives

(
j 51

6 F d

dt S ]T

]q̇ j
D 2

]T

]qj
2Qj1(

l 51

n

l l

]s l

]q̇ j
Gdq̈ j50,

dq,dq̇50. ~C21!

Following the usual arguments@20,24# of the Lagrange mul-
tiplier technique, the terms in brackets in Eq.~C21! all van-
ish, leading to the equations of motion, Eq.~2!.
l
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