PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Rigid body molecular dynamics with nonholonomic constraints:
Molecular thermostat algorithms
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Generalized Euler equations and center of mass equations are derived to describe the motion of a rigid body
under general nonholonomic constraints. These equations provide a basis for developing algorithms for rigid
body molecular dynamicdviD) simulations with nonholonomic constraints. In particular, two distinct molecu-
lar thermostat algorithms for constant temperature rigid body MD simulations are described. Both algorithms
ensure satisfaction of the temperature constraint at every MD time step, without introducing additional nu-
merical errors into the center of mass velocities or angular velocities. Results from constant temperature MD
simulations of a system of 500 methylene chloride (CH) rigid molecules using both thermostats are
presented, exhibiting their efficiency and accuracy. Finally, a generalized Gauss’s principle of least constraint
is derived, to establish a formal connection between the molecular approach described here for incorporating
nonholonomic constraints in MD simulations and previous atomistic approaches.

PACS numbeps): 02.70.Ns, 05.16-a, 07.05.Tp, 02.76-c

[. INTRODUCTION the outset that although a number of sophisticated rigid body
algorithms[10-14 and semirigid body algorithmgl5,16]
Nonholonomic constraints involving velocities are com-for MD simulations have been proposed, the molecular ther-
monly used[1-3] in equilibrium and nonequilibrium mo- mostat algorithms described here are based on the basic
lecular dynamicgMD) simulations. It is often desirable to dquaternion rigid body algorithril, 3], in order to illustrate
impose holonomic and nonholonomic constraints simultaMost clearly and simply the additions required to go from a
neously in a MD simulation. Either of two methods can bePure rigid body algorithm to a molecular thermostat algo-
used for this purpose. rithm based on it. The extension of the basic ideas presented

First, both the holonomic and nonholonomic constraintd€ré t the more sophisticated rigid body algorithms is, in
can be implemented explicitli4,5] by means of Lagrange prlrglple_ atlleast, gea_smlet. iments of nonhol .
multiplier techniques, which are essentially generalizations lassical mechanics treatments of nonholonomic con-
to additional nonholonomic constraints of approackts9) str_amts[l?_,li_ﬂ typically !nvolve r|g|d. bodies with rQII|ng
developed previously for explicit implementation of holo- (without slipping constraints(e.g., rolling sphere or disk on

. traint v E le. th | SHAKEa surfaceé and are consequently all linear in the velocities.
homic constraints only. For eéxample, he popular We are interested here, however, in describing the dynamics
algorithm[6,7] for holonomic constraints is generalized to a

) X X of rigid molecular models subject to more genem@bnlin-
GSHAKE algorithm[4,5] for handling both holonomic and ¢4y honholonomic constraints. Although actual mechanical
nonholonomic constraints. This first method, so-called atoméxamples of nonlinear nonholonomic constraints are rare
istic approach, is practical for totally or partially rigid mo- [17] computer simulations provide in contrast a flexible tool
lecular models, as well as for purely nonholonomic con-for imposing whatever forms of nonholonomic constraints
straints, of course. necessary to simulate desirable conditions. In particular, a
Second, for totally rigid molecular models, it is computa- common form of a nonholonomic constraint in equilibrium
tionally advantageous in some situatidris9,10 to imple-  and nonequilibrium MD simulations is the constant kinetic
ment the holonomic rigidity constraints implicitly, by means temperature constraint, nonlinear in the velocities.
of any of a variety of available rigid body MD methods  Accordingly, we derive in Sec. Il generalized equations of
[1,10—-14, while still incorporating the nonholonomic con- motion of a rigid body subject to general nonholonomic con-
straints explicitly with the Lagrange multiplier technique. straints. Using these equations, we develop in Sec. lll a
We shall refer to this alternative approach of imposing nonjpredictor-corrector quaternion thermostat algorithm for rigid
holonomic constraints in rigid body MD simulations as thebody MD with a nonholonomic constant temperature con-
molecular approach. It is our objective here to first derivestraint. However, when this basic thermostat algorithm is
equations of motion for rigid molecules under explicitly applied in MD simulations, the constant temperature con-
treated general nonholonomic constraints, and then to destraint diverges progressively from its constraint value, as
velop, based on these equations, two distinct molecular theiiustrated numerically in Sec. V. This numerical drift in the
mostat algorithms for constant kinetice., instantaneoys constraint is expectefil,4,5,19 because of the truncation
temperature rigid body MD simulations. It is worth noting at error inherent in any numerical integration algorithm used to
solve the constrained equations of motion. Two distinct ap-
proaches are developed here to deal with the constraint drift.
* Author to whom correspondence should be addressed. Electronfeirst, we describe a correction technique for use with the
address: r.kutteh@gmw.ac.uk basic thermostat algorithm, which eliminates the numerical
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drift without introducing additional numerical errors in the rive in Appendk C a generalized form of Gauss’s principle,
process, as shown in Appendix A. Second, in Sec. IV, arand show that it leads to the same equations of motion, Eq.
alternative thermostat algorithm is described where the ap2). In principle, then equations of constraints, E¢L), and
proximate, rather than actual, constraint forces and torquethe six equations of motion, E¢R), can be used to solve for
are computed to ensure satisfaction of the constant temperthe n Lagrange multipliers and the six generalized coordi-
ture constraint at every MD step, again without introducingnates describing the constrained dynamics. In practice, we
additional numerical errors in the process, as shown in Apwould like first to convert Eq(2) to a form that could serve
pendix B. As will be seen, these two distinct molecular ap-as the basis for a MD algorithm. To this end, we adopt an
proaches are formally analogous to counterpart atomistic ampproach similar to thd26] used for transforming from the
proaches for imposing holonomic and nonholonomicLagrangian to the Newtonian formulation of unconstrained
constraints in MD simulations. In particular, these two mo-rigid body dynamics. The total kinetic energyof the rigid
lecular approaches are analogous to the analytical methdsbdy can be written as

[6,9] (albeit with a drift correction schemand the method
of undetermined paramet€l8,7,9), respectively, for impos-
ing purely holonomic constraints in MD simulations. They
are also analogous to the direct approp&fs] (again with a
drift correction schemeand the undetermined parameterswhereT" is the rotational kinetic energy about the center of
approach[4,5], respectively, for imposing additional non- mass. Inserting Eq3) into Eq. (2), yields two sets of equa-
holonomic constraints. In Sec. V, we present numerical retions of motion. First, the equations for the translational mo-
sults from constant kinetic temperature MD simulations of ation of the center of mass are

system of 500 Lennard-Jones rigid molecules {(CH),
which exhibit the relative performance of all three molecular
thermostat algorithms mentioned above. Finally, a general-
ized Gauss principle of least constraint is derived in Appen-
dix C, to furnish a common framework for the aforemen-whereF andF° are the applied force and constraint force on

tioned previous atomistic methodg,5] and the present the rigid body, respectively, andV=(xa/dx+yaldy

g;?;?nctgl?': Ia%p;?gzkl]a;g:]slncorporatlng nonholonomic con- 2&./&'2).. Note that in the absence of the nonholonomic con-
) straints in Eq(1), Eq.(4) reduces to the familiar equation for

the center of mass translation of an unconstrained rigid body.

Il. EQUATIONS OF MOTION Second, the equations for the rotational motion about the

In the following derivation we make use of two distinct CeNter of mass are
coordinate systems: a laboratory coordinate system with ori- ; ;
gin O and a body-fixed principal axes system with orig@h E ﬂ _ ﬂ =Q— 2 A @:Q_ +Q°: i=4 6
at the body center of mass. Consider a rigid body with massdt| oq,/ dai =" 1" oq = o
M and configuration specified by six generalized coordinates (5)

g;, whereq;=x,q,=Y,03=2z are the Cartesian coordinates

of its center of mass in the laboratory coordinate system, an@here theQ; and Qf" are the applied torques and constraint
q4=0,05= ¢,qs= ¥, are the Euler angles giving the orien- torques, respectively, associated with the corresponding Eu-
tation of its principal axes relative to the laboratory axes. Thder anglesq; (i=4, ... ,6). Thechoice of center of mass as
Euler angles are defined here according to the common point of reference in the rigid body allowed us to derive two
convention[20]. Let the rigid body be subject to thenon-  sets of equations of motion, Eq$4) and (5), generally

1 .
T=§Mr2+Tr(9,¢,¢), (3

n
Mr=F-> \Va=F+F°, (4)
I=1

n

holonomic constraints coupled through their right-hand sides. Next, the principal
axes property of the body-fixed coordinate system is ex-
Ul(q,q,t)zo; I=1,...n, (1) ploited to recast Eq(5) in a form suitable for numerical

implementation. Isolating they equation(i.e., i=6) of the
where the dependence on all arguments is generally nonlirset in Eq.(5), gives

ear. The constrained dynamics of this rigid body can be de- |

i ! i i - d(oT" aT' Jdo
scribed by Appell’'s equations of motid21-23 S5 Q- DRY _-|:Q¢+ Q. ®
n ay| Y =1 9y
d[dT| 4T do .
dt E) B E:Qi_; )"a_'q:Qi+Qi » 1=1,....6, In the principal axes system, the components of the angular
' ' (2)  Velocity can be expressed EZ0]
where theQ; andQf are the generalized applied forces and w1= ¢ singsinyg+ 6 cosy,
generalized constraint forces, respectivalyis the total ki- ) )
netic energy, and th&’s are Lagrange multipliers. Histori- wy= ¢ Sinf cosy— Osiny,
cally, the atomistic approach for applying nonholonomic
constraints in MD simulations exploitdd,2] Gauss’s prin- wz= ¢ cosf+ ¢ (7)

ciple of least constraintl7,18,24,2% To establish a unify-
ing link with the molecular approach presented here, we deand the rotational kinetic energy is given by
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3 algorithm for MD simulations of rigid molecules under non-
Z Iiwiz, (8) holonomic constraints, in the molecular approach. In particu-
=1 lar, in the next section, we consider a predictor-corrector
quaternion algorithm and a constant temperature constraint.

T'=

N| =

wherelq, |,, andl; are the principal moments of inertia
relative to the center of mass. From E@) it follows that
dw1 1= w, and dw, /= — w,. Therefore, by means of IIl. THERMOSTAT ALGORITHM |

Egs.(7) and(8) we can write A common and important example of a nonholonomic

T 2 IT de c_onstra_int, b_oth in equilibrium a_nd nonequilibrium MD_
_:2 __':( =) wiwy: S|mulat|ons_, is the <_:onstant k|net|<_: tempergtlire con_straint
df =1 dwi I [1-3]. As discussed in the Introduction, atomistic algorithms
for implementing this constraint in MD simulations, with or
o S T dw; without additional holonomic constraintg.g., bond length
—-ZE —— —=lz0s. C) constraints, bond-angle constrajpteave been recently de-

scribed[4,5]. We now describe the first of two molecular
thermostat algorithms for implementing it within the molecu-
igr approach for a system of rigid molecules. The extension
of this algorithm to more than a single nonholonomic con-
straint and to other desirable forms of nonholonomic con-
straints is straightforward.
: N - The basic thermostat algorith(BTA) described first is
rro,0,00,0,0s,t)=0; I=1,...n (10 e :

il ¢ 01,02,03,) (10 ased on a modification of the well known quaternion algo-

an important example of which is the constant kinetic tem-ithm [1] for rigid body MD simulations. In practice, this

perature or energy constraint discussed in Sec. lll. USH’I&TA will Suffel’ from numerical dl’lft in the constant kinetiC
Egs.(7) and (10), we have temperature constraint, as shown in Sec. V, because of the

truncation error inherent in the numerical integration of the
do 3 90| dw; do equations of motion. Accordingly, we follow the BTA with a
Qy=- DN—T—=—2 N —— == N, correction technique where the center of mass velocities are
=gy FL fE1dei gy F1dos corrected to ensure that the constant temperature constraint is
(11 satisfied, within a desired tolerance, at every MD time step.
The BTA with this correction technique are referred to col-
lectively as thermostat algorithm(TAL).

Using Eq.(7), the derivatives of the Euler angles can be
expressed in terms of the angular velocities and trigopnome
ric functions of the Euler angles. Thus E@) can be recast
in the more common form

n n

However, the torque associated with theuler angleQ,,
is equal[20,26§ to the principal axis torqué&l;. Therefore,
insertingQ, =Nz and Qj,=Nj3, together with Eqs(9) and _ _
(11), into Eq.(6), yields A. Basic thermostat algorithm

N ; Consider a system ™ interacting rigid molecules subject
_ o . L9 .
s (11— | ) @yp= N3—|21 )",9_&;;: N3+ NE. to the nonholonomic constant kinetic temperature constraint

(12

N 3
U(i‘,wl,wz,w3)=az Mji‘jz-i-z I{(a)f)2 —B=0,
Because the labeling of a principal axis as the three-axis is = 1 (14)
arbitrary, Eq.(12) can be cyclically permuted to obtain the

remaining two rotational equations of motion. Hence theynere g is a desired constant kinetic temperature,
equations of motion describing the rotation of the nonholo-_ (6N —N_)kg, with N, equal to the total number of con-
nomically constrained rigid body, about its center of MasSstraints, which is four in the present case, to account for

are given by conservation of total linear momentum and Etg). Clearly,
n P Eq. (14) is a special case of E10).
. _ 9 _ In the BTA, the kinetic temperature is initially brought to
l1wy—(1,—1 =N;— >, N =—=N;+N§, ; , , : /
101~ (2~ 1) 0205 =Ny 2’1 ow t a desired value, typically by scaling the velocitidg, and

then the algorithm attempts to maintain it constant during the

. n do MD simulation. Hence the constant kinetic temperature con-

lowy— (13— 1) w03=Ny— 2, ) .~ Nat N3, straint is implemented instead simply by means of a constant
=1 2 kinetic energy constraint

lsws— (11— 1,) —N—é)\—aal—NJrNc : S T
3@3 1 2)@102= N3 =1 I(9Q)3_ 3 3 0"(i‘,w1,w2,w3)=z EMJrJZ‘i‘EE If(wf)z _ﬂ’:O
=1 =1
(13 ! ' (15

In the absence of the nonholonomic constraints in @g.
Eq. (13) reduces to the well known Euler equatidi29] for
the rotation of an unconstrained rigid body about its center of . : )

mass. Equation$4) and (13) must form the basis of any Mjri=F—AMjrj=F+F, j=1,...N (16

From Eg.(4), the center of mass equations of motion are
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and from Eq.(13), the equations for the rotation about the

centers of mass are =0. (18)

Solving Eq.(18) for \ yields

ol — (1 = 10) ol wh = Nk — A 1 o) N S
3W3 17 12) W03 3 3W3 Fj'rj+z wa{
. =1 i=1
=NL+(NYS  j=1, N. A= N 3 (19
(7 2 M+ 2 Hle])?

The numerical solution of these equations of motion is per-

formed in two steps. First, the nonholonomic constraint

forces, F¢, and constraint torquebli, N3, and N3, are By means of Eq(19), the constraint forcess®, and con-
evaluated. Second, the equations of motion are integrategiraint torquesNS, NS andNS, can now be computed.
numerically using the potential energy forces and torques oy the numerical integration of the constrained equations
together with the constraint forces and torques. The compus¢ mqtion, we adopt the predictor-corrector quaternion algo-

tation of the constraint forces and torques requires cComputgsym [1,10,11,13 commonly used ifunconstrainedrigid

tion of the Lagrange multipliex. To this end, differentiating : ! : T .
Eq. (15) with respect to time and inserting into the resulting body MD simulations. The molecular orientation is given in

. . . terms of four quaternion parametears(i =0, . . . ,3) subject
equation the expression foy from Eq. (16) and the expres-  the normalization condition2-+ g2+ g2+ g2=1. To inte-
sions forwy, w}, w} from Eq.(17), gives grate the equations of motion, the center of mass positions,

N the quaternions, and the angular velocitiasd all their ap-
> [F, _)‘Mjij] ) 'r]_ + ol [N =Ml + (1, —1L) whwl] propriate time derivati_v_ésare first predicted using the stored
i=1 values of these quantities and their required time derivatives.

The quaternions are then typically renormalized to preserve
orthogonality of the rotation matrix for the corresponding

+HING =Nk + (1= 1)) o)) molecule

+OHINs Mo+ (1= 1) o))

9o+a2—0a5—q3  2(d182+0oGs)  2(d103—ola)
A=| 2(0102—dods) 05— 0aT+a3—a3 2(0x03+dods) | . (20)
2(0103+dolz)  2(G203—GoG1) 93— G5—0g5+03

Multiplication of the principal axes components of the (16), and the constraint torqué§ , N5, andN§, and poten-
atomic positions with respect to the centers of mass, byial energy torquesdl;, N,, andN;, are used in the corrector
A~Y(=AT) yields the laboratory frame components of the stage, according to E¢l7). Finally, the quaternions are cor-
predicted atomic positions with respect to the centers ofected for each molecule according to the kinematic equa-
mass. These are then added to the corresponding predictédns

center of mass positions to give the predicted atomic posi-

tions in the laboratory frame. Subsequently, the force on

each atom is computed and the total forcand total torque do o —O1 —02 —0Qs 0
on each molecule are evaluated in the laboratory frame. The : _

a1 1{d2 do ds 0Oz w1
laboratory frame components of the total torque on each =5 (21
molecule are then multiplied b to yield the necessary d2 G2 O3 Qo ~Oi]| @2

corresponding principal axes torqudsg, N,, andN5. Up to

this point, the quaternion scheme described is simply the
standard one. In Sec. IV, we will refer to this stage of the
BTA as stage A. Now, however, the undetermined multiplierNote that through theix coupling, the corrector stage of Eq.

\ is evaluated according to Eq19), and the constraint (16) depends now explicitly on rotational quantities, while
forcesF® and constraint torqueN{, N5, andN§ are com-  the corrector stage of E¢17) depends explicitly on transla-
puted. The constraint forcé$ and potential energy forcds  tional ones. In Sec. V, we use a common combination of a
are used in the corrector stage of the algorithm, based on Ethird order Gear predictor-corrector for integrating the center

qa s —02 Qi Jdo w3
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of mass equations of motion and a fourth order Geamvhich is quadratic in the unknown, and wherew;, wo,
predictor-corrector for the quaternions and principal angulaandw are obtained from the BTA, of course. The solutipn
velocities. is substituted into Eq(23) to provide the final constrained
center of mass velocities. It is most convenient computation-
B. Drift correction technique ally to solve Eq.(24) iteratively for y, essentially by New-

As mentioned before, when the above BTA is applied inton’s method. To this end, consider a certain iteration, drop
’ i y ; ~old

MD simulations, the constant kinetic temperature constraint® ¥ notation fromr;(to+ ét, ) in Eq. (23), and letr®(to
Eq. (14), diverges progressively from its constraint vajge ~  9t) include all changes made up to this point in the itera-
Therefore, we describe next a technique for use following thdion- From Eq.(23), the new center of mass velocities ob-
BTA, which eliminates the numerical drift in the constraint {@ined in the current iteration can be written as
at every MD time step. A truncated Taylor expansion of the . ., ol new: o
center of mass velocities from the BTA, can be written as i (o™ 0)=r"(to+8) = 6ty™i(to);  (I=1,... ”(\12)5’)

r =r +r. . o )
Fi(to 0 =Ti(to) +1i(to) ot where the starting value af'(ty+ 8t) is ri(to+ 6t) in Eq.

) ot ) _ (23), the center of mass velocities from the BTA, of course.
=rito) + WF‘(tO)_ AtA(to)ri(to); Taylor expandingo(r""(to+ 8t),w;,w,,w3) aboutr®(t,

] + 6t) gives

(i=1,...N), (22)

+old _ new,
where use was made of E(16). Introducing an additional (Lo + 81 = 8ty (to), 01, 0z, 3)

term into Eq.(22), containing an unknowry, gives = (% ty+ ), 0y, 0y, w3)

. . ot . : N

ri(to+ ot y)=ri(to) + M_iFi(tO) — Ot (to)ri(tg) — Styri(to) — 5t7nevvzai§1 M;r%%to+ 8t) - Fi(tg)+--- =0
=ri(to+ o) = dtyri(te);  (i=1,... N), 26)

(23 where the quadratic term is not shown explicitly. Neglecting

. . -
wherey is required to have a value such that the constraintth® nonlinear term and solving for**" yields

Eq. (14), is satisfied. Therefore Eq14) can be written as :
new ot + 8t), 01,05, 03)
y*r=L6t] N . @

2a21 Mot + t) - ri(to)

U(r(t0+ &’7)1(1)11(1)2!(1)3)

= (r (to+ 8t) — Sty (to), w1, w5, w3)=0
(29 Inserting Eq.(27) into Eqg. (25 gives

3

N
a3, | ML+ o0 ]2+ 3 1o])?) - 8
i= i=

1 (to+ 8t) =1t + ot) — . Ft) (i=1,...N). 28)
22, Mir?(to+ 8)-ri(to)
=1
|
Immediately following the BTA, the center of mass veloci- IV. THERMOSTAT ALGORITHM I

ties are iterated according to E@8) until the numerator in
parentheses, representing the current value of the ConStrai@E)nstraint forcesE®, and actual constraint torques , NS,
funct|_on, is below a desired tolera_n@e It is shown in Ap andNS, were computee priori at stage A of the BTA and
pendix A that, owing to the special form of the additional |;5eq in the integration of the equations of motion, Eas)
correction term introduced in E@23), this correction tech-  anq(17). The constraint forces on the centers of mass were
nique, and hence the TA1, does not introduce into the centejybsequently corrected, or approximated, to eliminate the nu-
of mass velocities, errors of an order in the time step lowemerical drift in the temperature constraint and ensure its sat-
than already present in the BTA. Note in addition that thisjsfaction at every MD time step, as described in Sec. Ill B.
correction does not affect the BTA values of the angulatwe now describe an alternative thermostat algorithm |
velocities and, hence, of the quaternions. (TA2) where the approximate, rather than actual, constraint

In the TA1 described in the previous section, the actual
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forces and constraint torques are compugéegosteriori to Fito+ 8t) =t (tg+ St)— Styri(to)  (i=1,...N)
ensure satisfaction of the temperature constraint at every MD ' 0 e no ' ' (31)
step. It is shown in Appendix B that the TA2 does not intro-
duce, into the center of mass velocities or angular velocitiesand
errors of an order in the time step lower than already present J. i J.
in the BTA. A comparison of the advantages of TA1 versus i (to+ 8t) = wi (to+ 6t) — St pwi(to)
those of TA2 is given in Sec. V. . .
A truncated Taylor expansion of the center of mass ve- (i=1,....3)=1... N), (32

locities from the BTA is given by respectively, wherey is required to have a value such that
) ) . Eq. (14) is satisfied. Hence Eq14) can be written as
ri(to+ot) =ri(to) +ri(tg) ot

a(r' (to+ 8t) — St yr(to), 0] (to+ 8t) — St pw;(ty)) =0,

. ot :
=Ti(to)+ 37 Fi(to) = tA(to)ri(to) (33
|
_ _ which is quadratic in the unknowm. The solutiony is
=r{(tg+ )+ ri(tg+t) (i=1,...N), substituted into Eq¥31) and(32) to provide the constrained

center of mass velocities and constrained angular velocities
from the TA2. As in Sec. Ill B, it is most convenient com-

where the unconstrained center of mass velogigo+ ot) putationally to solve Eq(33) iteratively for . Again, with

R R R Id . . . . .
denotes the sum of the first two terms. Similarly, a truncated* (to+ ot) including all changes made up to this point in
Taylor expansion of the angular velocities from the BTA is the iteration, the new center of mass velocities obtained in

(29

given by the current iteration can be written as
. - - : _ rold : P
wi(to+ 8t) = w}(to) + w)(to) ot 1 (to+ 8 =r{"(to+ 8) = 8ty i (te) (i=1,... ,'22‘,1)
_ st _ _ : . o
= wl(te) + <[ (15— 1}) wh(te) wh(to) where the starting value mf’.'d_(to+ 8t) is r{ (to+ 8t). Simi-
17 larly, the new angular velocities obtained in the current itera-

; ; tion can be written as
+Ni(to)]— StA(to) wi(to)

| i . W g0+ 8t) = wl O to+ 6t) — St "l (t
— wi(to+ 8+ Swh(to+ ) (j=1,... N), i o+ 0= i o 0) = Aty wi(to)

(30) (i=1,...,3;j=1,... N), (35

where the unconstrained angular velocity!(to+ 6t) de- ~ Where the starting value 0b] *(to+5t) is ]! (to+ ).
notes the sum of the first two terms, and similar equation§aylor expanding o(r"(t,+ 6t),w*"(to+ 6t)) about
hold for w}, and w}. In the BTA, the constrained center of fold(to+ 8t) and wi‘"d(to+ 8t) gives
mass \_/elocitiesti(to+ 6t), and constrained angular veloci- - ol ew old ew
ties, wl(to+ ot), were evaluated by first computing and ~ o(F*“(to+ 6t) = 6t (1), ™ (to+ 6t) — 6t " wi(to))
then numerically integrating the equations of motion. In- — (Ot 81, tg+ B))— Sty
stead, we now compute thg(ty+ ot) and w!(to+ ot) from :
the two contributions in Eq€29) and (30), respectively. N . )

First, ther/(to+ 6t) and /! (to+ 6t) are evaluated by Xizl Mir?(to+ 8t) - 1i(to) — ot "2
numerically integrating the equations of motion using only
the potential energy forces and torques at stage A of the NoS ol _
BTA. Second, theSr; and Sw! are chosen to ensure satisfac- le |=21 Hop ®(tot+ s i(to) +- - - =0, (36)
tion of the constraint at every MD time step. To this end
\(tp) is replaced by an undetermined parametgrand Eqs.  where the quadratic term is not shown explicitly. Neglecting
(29) and (30) become the nonlinear term and solving fof™®" yields

o (r(ty+ ot), w%ty+ 8t))

(37)

N 3
2aj§l M;r % to+ 8t) - 1i(to) + ;1 ol 9ty + o) ol (to)

Inserting Eq.(37) into Eq. (34) gives
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3
Mj[f}""<to+5t>]2+; If’[w%*""’(towt)]z] -B
5 rite) (i=1,...N)
M jff'd<to+at>-f,-<to>+_21 Hw{'md(to"‘&)w{(to)}

N

a2

. . j=1
[t 0 =1t o) — | —
202,

=1

(38)
and into Eq.(35) gives
N 3
a2, Mo+ o012+ 2 o]t + &)]2]—3
F "Mt + 81) =} Mt ot) — | — . wl(ty)
2a_21 [Mjff'd(tﬁ &).fj(to)+_21 el %tq+ &)w{(to)}
1= 1=
(i=1,...,3;j=1,...N). (39)

The center of mass velocities and angular velocities are itetemperature, it is common practice to maintain constant ki-
ated according to Eq$38) and (39), respectively, until the netic temperature during equilibration by scaling the veloci-
numerator in parentheses, representing the current value tiés by (desired temperature/current kinetic temperattite

the constraint function, is below a desired toleramcdt is  say at every MD step. However, because temperature is not a
shown in Appendix B that the center of mass velocity andfixed parameter in constant energy MD simulations, the state
angular velocity trajectories from the TA2 are numerically point reached at the end of equilibration is typically only
equivalent to the corresponding trajectories from the BTAclose to the desired one, often frustrating reproduction of
and hence, in light of the conclusion of Appendix A, areindependently obtained results, for comparison purposes. As
numerically equivalent to the corresponding trajectories froma more effective alternative to the crude velocity scaling
the TAL also. After the constrained center of mass velocitiesechnique, either TA1 or TA2 can be used to fix the kinetic
and angular velocities are obtained as described above, themperature during equilibration, with the tolerancead-
quaternions are corrected based on @4), as the final step justed for approaching a particular state point as closely as

in TA2. desired at the end of equilibration, as illustrated in Figs. 1
and 2 for the TA1l and TA2, respectively. For the TA1, the
V. NUMERICAL RESULTS AND DISCUSSION average number of iterations per MD step over the equilibra-

Numerical results are presented here to exhibit the prop- 305

erties of the molecular thermostat algorithms TA1 and TA2

and their relative performance. Constant energy MD simula- 303

tions and constant kinetic temperature MD simulations were 301 ¢

per_form_ed on a system of 500 rigid mol_ecules interactingvia o 299 ¢

a five-site Lennard-Jones 12-6 potential. Parameter values g 297 |

were chosen as those of methylene chloride ,Cl with 8 o5l

geometry and potential parameters obtained from R g

The five force sites are identical with the atomic positionsin ~ § 293

the molecule, and although a methylene chloride molecule is & 291

a nearly symmetric top molecule, strictly speaking its three 289 |

principal moments of inertid,;, |,, andl; are distinct. All 287 |

simulations were performed with time stéip=1 fs. Peri- 285 ) ) ) ) )

odic boundary conditions were imposed and a potential cut- 0 4000 8000 12000 16000 20000

off radius equal to half the box length was used. As com- Time step

monly done[1], a third order Gear predictor-corrector was

usgd for integrating the Cente.r of mass equations of mOtlone‘nergy MD simulations of 500 Lennard-Jones rigid molecules
while afourt_h order Gear pr_edlctor-corrector was adopted fO'ECHZCIZ). with 2000 equilibration steps and 20000 production
the quaternions and principal angular velocities. The CONgtag The desired temperature is 293 K. At the end of equilibration
stant energy MD simulations were carried out at & density Ofye temperature accumulator is reset to zero. The bottom curve is
1.326 g/cm and temperature of 293 K. The constant kinetic gptained with velocity scaling at every step during the equilibration
temperature simulations were performed at the same densitijhase. The other curves are obtained using TA1 during equilibra-
while the kinetic temperature was maintained fixed at 293 Kton. Starting with the lowest curve and counting up, the tolerance
using the TA1 or TA2. values used are=0.1, 0.7, and 0.8, respectively. Of these values,

First, to perform constant energy rigid body MD simula- the optimal one for attaining the desired set point temperature, us-
tions at a state point specified typically by the density andng TAL, is in this caser=0.7.

FIG. 1. Thermodynamic temperature vs time step in constant
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0 4000 8000 12000 16000 20000 0 4000 8000 12000 16000 20000
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FIG. 2. Thermodynamic temperature vs time step in constant fiG. 3. Kinetic temperature vs time step for four MD simula-
energy MD simulations of 500 Lennard-Jones rigid moleculesiions of 500 Lennard-Jones rigid molecules (CH), with 2000
(CHCI), with 2000 equilibration steps and 20000 production gqyjlibration steps and 20 000 production steps in each. The two
steps. The desired temperature is 293 K. At the end of equilibratiogyerlapping horizontal lines are from constant kinetic temperature
the temperature accumulator is reset to zero. The bottom curve i§ip simulations using TA1 and TA2, respectively, for the entire
obtained with velocity scaling at every step during the equilibrationgimylation runs, with desired kinetic temperature of 293 K and
phase. The other curves are obtained using TA2 during equilibragjerance value-=0.01 for both simulations. The drifting curve in
tion. Starting with the lowest curve and counting up, the tolerancgne neighborhood of the horizontal line is from a constant kinetic
values used are=0.1, 0.2, and 0.3, respectively. Of these values,iemperature MD simulation using the BTA during production and
the optimal one for attaining the desired set point temperature, Usze|ocity scaling at every step during equilibration, with desired ki-
ing TA2, is in this caser=0.2. netic temperature of 293 K also. The background curve is from a

constant energy MD simulation with desir@lermodynamictem-
tion period was 0.13, 0.013, and 0.0065 #6r 0.1, 0.7, and  perature of 293 K, where the kinetic temperature is shown every
0.8, respectively. For the TA2, the average number of itera100 steps only to prevent cluttering. Velocity scaling is also used at
tions per MD step over the equilibration period was 61.5,every step to fix the kinetic temperature during equilibration of this
43.1, and 33.8 forr=0.1, 0.2, and 0.3, respectively. The simulation.
reason for the large difference between the convergence rates

of TA1 and TA2 is explained shortly. from the simulation with BTA and the kinetic temperatures
The BTA attempts to maintain a given temperature confrom the simulations with TA1 and TA2, respectively.

stant. As noted before, this temperature will drift however Figures 3, 4, and 5 show clearly that the BTA by itself

because of numerical integration error. The correction techsyffers from numerical drift in the constant kinetic tempera-

nique in TAl ensures that the temperature remains at thgre constraint, hence the need for the two more accurate
desired value at every step of the simulation. Because the

correction technique is a linearized expansion-based scheme, 205 . , , , ,

it requires relatively small corrections to converge. Hence in

the first step only of equilibration with TA1, the kinetic tem- 2945 | |

perature is brought to, or near, the desired value using veloc- &

ity scaling. The remainder of the equilibration is performed @& g4 | |

solely with TA1l. Similarly, the TA2 is a linearized =

expansion-based algorithm, hence it requires small correc- & 2935 |

tions to converge. Therefore in the first step only of equili- 5

bration with TA2, the kinetic temperature is also broughtto, & 595

or near, the desired value using velocity scaling, and the :%’

remainder of the equilibration is performed solely with TA2. 2005 | |
Second, we perform constant kinetic temperature simula-

tions with the BTA, TA1, and TA2, and compare constraint 292 . \ . . .

conservation results. Figure 3 compares kinetic temperatures 0 4000 8000 12000 16000 20000

in constant kinetic temperature simulations using TA1, TA2, Time step

and BTA. A Folerar)cer: (.)'01 was used for bOth. TA.l and FIG. 4. Kinetic temperature vs time step for two constant kinetic
TAZ2. In the simulations with TA1 and TA2, the kinetic tem- temperature MD simulations of 500 Lennard-Jones rigid molecules

perature was fixed during equilibration using also TA1 andcp,cl,), with 2000 equilibration steps and 20000 production
TA2, respectively, as described above, whereas velocity scalyeps, and desired kinetic temperature of 293 K. The horizontal line
ing was used for this purpose in the simulation with BTA. s from a constant kinetic temperature MD simulation using TA1
For the above value of the tolerance, the average number @y the entire simulation run with tolerance value=0.01. The
iterations per MD step over the entire production period wasrifting curve is from a constant kinetic temperature MD simulation
3 for TA1 and 174 for TA2. Figures 4 and 5 show compari- using the BTA during production and velocity scaling at every step
sons on an expanded scale between the kinetic temperatutaring equilibration.
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295 T T T T T VI. CONCLUSION
2045 | | In this article, generalized equations were derived for the
o motion of a rigid body under general nonholonomic con-
® ool | straints. These equations were used to develop two molecular
2 thermostat algorithms TA1 and TA2, for constant kinetic
g 2935 | temperature MD simulations of rigid molecules. Results
£ ' from MD simulations of a system of methylene chloride
@ Yy y
_:é 093 rigid molecules exhibited the good performance of both TA1
2 and TA2 and their relative advantages. The molecular algo-
- 2925 | rithms presented here complement atomistic constraint algo-
' rithms described previousl{4,5]. In the context of these
092 ‘ , , ‘ , atomistic methods, the TA1 is the molecular approach coun-
0 4000 8000 12000 16000 20000 terpart of the direct metho#,5], albeit with a drift correc-

Time step tion scheme, and the TA2 is the analog of the GSHAKE
[4,5] algorithm. Finally, a generalized Gauss principle of
least constraint was derived to provide a formal link between
fhese atomistic and molecular approaches.

FIG. 5. Kinetic temperature vs time step for two constant kinetic
temperature MD simulations of 500 Lennard-Jones rigid molecule
(CH,CI,), with 2000 equilibration steps and 20000 production
steps, and desired kinetic temperature of 293 K. The horizontal line
is from a constant kinetic temperature MD simulation using TA2
for the entire simulation run with tolerance value=0.01, where
the kinetic temperature is shown every 100 steps only to prevent This research was partly funded by the United Kingdom
cluttering. The drifting curve is from a constant kinetic temperatureEPSRC under Grant No. GR/L49956 and by Unilever Re-
MD simulation using the BTA during production and velocity scal- search. The authors would like to thank Manchester Comput-
ing at every step during equilibration. ing for use of the SGI Origin 2000 through the EPSRC

funded Class 3 service.

thermostat algorithms, TA1 and TA2. From the above results
it is clear that TAl requires in general fewer iterations to
converge within a desired toleraneethan does TA2. This
faster convergence of the TA1 can be attributed to the fact Any technique designed to eliminate or reduce within a
that the iterative correction in the TAL is performed on thedesired tolerance the numerical constraint drift must not in-
already constrained motidne., through the BTA while the ~ troduce consequently additional numerical err¢is., of
iterative correction in the TA2 is performed on uncon-lower order in the time-stggo those in the integration algo-
strained motion, as described in Secs. Il and IV, respectithm and the original metho¢e.g., the BTA. We provide
tively. On the other hand, TA2 is easier to implement thanh€re an error analysis for the TAL, which shows that it does
TA1 for that same reason. Figure 6 shows the ratios of th&0t introduce errors into the center of mass velocities addi-
translational to rotational kinetic energies for the two simu-tional to those present in the BTA.
lations using TAL and TA2, respectively. The average ratio 1 N€ center of mass velocities generated by the BTA can
over the entire production period was 0.99 for both simula-be represented by th_e Taylor expansion E2p). The last
tions. term in Eq.(22_) conta]ns)\(to) .and the highest poweﬁt.
Assuming the integration algorithm has an error in the center
of mass velocities 0D(5t™"1), the equivalence of the Tay-
lor expansion and the integration algorithm implies that the

ACKNOWLEDGMENTS

APPENDIX A: ERROR ANALYSIS FOR TAl

12 ' y y y highest term in the Taylor expansion is 6f(5t™), hence
5 1145 | StA(to) is of O(8t™M). Therefore\(to) is of O(st™ 1), or
E 1.1}

5 A(to)=B+0O(ot™), (A1)
5 105}

T

'-E ! where 3 is some estimated or approximated valuex¢fy).
T 095} Comparison of Eq(22) with Eq. (23) shows that the drift
g 0o | correction technique involves the approximatiomgf,) by
2 ' [A(tg) +7y] in Eq. (23). Accordingly, replacing 8 by
g osst [A(to) +v], Eq. (A1) becomes

0.8 ' . s s
17000 18000 19000 20000 21000 22000
Time step [A(to) + ¥]=A(tg) +O(6t™). (A2)

FIG. 6. Ratio of translational to rotational kinetic energies for
the constant kinetic temperature simulations performed with thdnserting Eq.(A2) back into Eq.(23), the final constrained
TAL1 (solid line) and TA2 (dashed ling Ratios are shown only for center of mass velocities given by the correction technique
the last 5000 steps of the simulations to avoid cluttering. can be written as
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. ) St . Inserting Eq.(B3) back into Eq.(31), the constrained center
ri(to+ 6t,y)=ri(to) + - Fi(to) = StA(to)ri(to) of mass velocities given by TA2 can be written as
M
I
+O(8t™Y)  (i=1,...N).  (A3) Fi(to+ SO =r{ (tg+ 8t) = SN (to)ri(to) + O(St™ 1)
By comparing Eq(A3) with Eq. (22), we can write (i=1,...N). (B5)
ri[TA1]=r,[BTA]+O(&t™ 1) (i=1,...N). Inserting Eq(B4) back into Eq(32), the constrained angular

(A4)  velocities given by TA2 can be written as

On the other hand, from the assum@@st™ 1) of error in wl(to+ o) = ! (ty+ 8t) — SN (tg) ! (tg) + O(St™ +1)
the center of mass velocities in the BTA, we can write
. . (i=1,...,3;j=1,... N). (B6)
ri[BTA]=r;[exac(ty+ ot) + O(stM*1), (A5)
Comparing Eqgs(B5) and (B6) with Egs.(29) and(30), re-
wherer;[exaci is the trajectory obtained ideally from an SPectively, we can write
exact analytical solution of the equations of motion. Finally,

inserting Eq.(A5) into Eq. (A4) gives r[TA2]=r[BTA]+O(8t™*Y) (i=1,...N),
r[TAl]=r[exacl(ty+ 8)+O(St™1).  (AB) wl[TA2]=0|[BTA]+O(8t™ *1)
Equation(A4) shows that the correction technique, or TAL, (i=1,....3/j=1,... N). (B7)

introduces no additional errors into the center of mass veloci- mt 1
ties of the BTA. Equivalently, comparison of EGA6) with on t:i 1other hand,. from the assumdM At )_ .and
Eq. (A5) shows that the velocity trajectories from the BTA O(6t™ %) of errors in the center of mass velocities and
and the TA1 are numerically equivalent, where in the TA1,angular velocities in the BTA, respectively, we can write
however, the constant kinetic temperature constraint is satis- . . M1 )
fied at every MD time step. rifBTA]=ri[exac{+O(st™" ") (i=1,...N),
i =l "+1

APPENDIX B: ERROR ANALYSIS FOR TA2 wi[BTA]=wi[exaci+O(st™ ™)

We provide here an error analysis for the TA2, which (i=1,...3 j=1,...N), (B9
shows that it does not introduce errors into the center of mass . J. N .
velocities or angular velocities additional to those present ivhererilexacy and wj[exac] are the velocities obtained
the BTA. The center of mass velocities and angular velociideally from an exact analytical solution of the constrained
ties generated by the BTA can be represented by the Tayldquations of motion. Finally, inserting E@8) into Eq.(B7)
expansions Eqg29) and(30), respectively. The last term in gIVes
each of these equations contaN($,) and the highest power . : _— )

St. Assuming the integration algorithm has an error in the ~ filTAZ]=r[exac}+O(st™" ") (i=1,...N),
center of mass velocities @(s5t™*1) and an error in the J_ J_ ey

’ — m
angular velocities 0O(st™ *1), the equivalence of the Tay- 0|[TAZ]= wi[exaci+O(st™ ™)
lor expansions and the integration algorithm implies that the (i=1 3 j=1 N) (B9)
highest term in the Taylor expansions is ©f 5t™) and I o
O(&tm'), respectively. Hence, in Eq29), 8t\(tp) is of  Comparison of Eq(B9) with Eq. (B8) shows that the veloc-

O(6t™) and therefore\(ty) is of O(6t™ 1), or ity trajectories from the BTA and from the TA2 are numeri-
cally equivalent, where in the TA2, however, the constant
A(to)=B+0O(st™) (B1)  kinetic temperature constraint is satisfied at every MD time
) step.
and, in Eq(30), 8t\(tp) is of O(St™ ) and thereforé (ty) is
of O((Stm/_l), or APPENDIX C: GENERALIZED GAUSS PRINCIPLE
)\(to)=,8+0(5tm'), (B2) As mentioned before, the atomistic approach for applying

nonholonomic constraints in MD simulations exploited ini-

where is some estimated or approximated valuen¢f,).  tially Gauss’s principle of least constraint. To establish a
In TA2, \(to) is replaced byz, as described in Sec. Iv. common theoretical framework for the molecular approach

Accordingly, replacingd by », Eq. (B1) becomes constraint algorithms, such as the BTA, TAL, and TA2 in-
troduced in this work, and the atomistic approach algorithms
7=N\(tg) +O(5t™) (B3)  [4,5], such as GSHAKE and the direct method, we derive
here a generalized form of Gauss’s principle, and then show
and Eq.(B2) leads to that it leads to the same equations of motion, @g.used to

, formulate the present molecular approach.
7=N(tg) +O(5t™). (B4) For a system oN particles with masse®,, Gauss’s prin-
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ciple of least constrairtl7,18,24,2% y

.. ar; .
=2, 5o-80;.  00,50=0. (C8)
N m- ! . =1 dq;
8 >, —(F—mr,)2|=0, ér,6r=0 (Cl) , _ ,

=1 2 Inserting Eq.(C8) into Eq. (C5) yields
states that at any point along the actual path of the motionin ~ » [ N ar,; Lo\ _
(r,r,r) space, the bracketed quantity is minimum with re- le 2 (FI' ag M 70, ) 69;=0, 69,6q=0.
spect to variations in the accelerations satisfying any con- ' (C9)

straints present, keeping the coordinates and velocities fixed.

The system oN particles is assumed to be subject in generalthe common quantity in brackets is easily recg] in
to both holonomic and nonholonomic constraints. A|te|’na-genera|ized coordinates and Eq:g) then becomes
tively, Eq. (C1) can be written in terms of the constraint

forces L4 (91- JaT 3 )
2 —-———Qy|69;=0, 49,69=0,
5[21 'T(Ff)z}:o, Sr,or=0. (C2) (C10
e
where theQ; are the generalized applied forces ani the
Carrying out the variation, the left side of E(C1) gives kinetic energy. EquatiofiC10 is the desired generalized co-

ordinates form of Eq(C5). We now recast Eq.C10) in the

N N form of a minimum principle. For the Kkinetic energy
T e W PP U . .
{Z‘ 2m (Fi—mr;) } 2‘1 mi(F' mir) - (R —=myr;) T(g,q,t) we can write

N
. d|[dT o [aT\. K 9 [dT|. aT
:_E (Fi—miri)-&i, —(— :_ —<—>q|+z _(_ q|+ (
=1 dt| gq;) =194\ oq =1 9q; | dq; aq;
(011)

Sr,6r=0, (C3 , - . :
Evaluating the variation of Eq.C11) at fixed coordinates

where the last equality follows from the vanishing of the @nd velocities gives
variation of the applied force;(r,r,t), at fixed coordinates

y 2
and velocities d ) ZE al
N IF JF, il aq,aq,
SFi=2, orj-—+2, o1 —=0, 6r,or=0. 4 .
I S N =2, Mjj(a,0)d8;, 09,69=0, (C12)
(CH -
Using Eq.(C3), Gauss’s principle, Eq(C1), assumes the whereM;; is evidently a symmetric matrix. Solving falg;
equivalent form yields
! ) . ; L JdfaT .
2 (F,—my;)- or,=0, &r,or=0. (C5) 5qi=;Mij 8 3¢ Pl 8q,69=0. (C13
i

We wish first to recast EqC5) in terms of generalized co- By means of Eq(C13), the left side of Eq(C10 can be
ordinates. To this end, we effect a point transformation to awritten as
set of y generalized coordinatep

_ zydaT aT 5_27d0T aT
N=rids, ... a0, i=1,...N. (CO 2|t <9_q| o Qi 9=2 | g ™ aq
In generaly=3N. For example, if no holonomic constraints d /[ aT
are incorporated implicitly in the point transformation, Eq. X E Mi]15 g ) ]
(C6), theny=3N. On the other hand, in the case of a rigid =1 t 19q]
body y=6. From Eq.(C6) it follows that
6q,6q=0. (C19
L4 ar; .
sri=> —6q;; i=1,...N. (C7)  However,
j=1 dq;
Differentiating Eq. (C7) twice with respect to time and d ﬂ =5 d ﬂ _E_Q_ ., 89,50=0,
evaluating the variation at fixed coordinates and velocities, dt aq; dt aq;/ 94 J

gives (C1H
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because the variations éfl/dq; andQ;(q,q,t) both vanish  tions satisfying any constraints present, keeping the general-

at fixed coordinates and velocities. Inserting EQ15) into ~ ized coordinates and velocities fixed. E(C17) is a
Eq. (C14) gives generalized form of Gauss’s principle of least constraint.

Recognizing that the quantities in brackets are equal to the

Y 1d/[ T oT . generalized constraint forces, BE§17) can also be written
2= =] —Qi| 5 in the alternative compact form
i=1 dt q; (?qi
Y M 1 ]
SRV el KA AP 5 3 —5-QQf|=0, sq.60=0. (C19
S [dtl g g e
In the case of Cartesian coordinates we hdvg=m;J;;,
< dfoT| o1 and Eqs(C17) and (C18) reduce to the forms of EG$C)
dt\ gq,) oa; and (C2), respectively.
. We now consider the rigid body of Sec. Il and show that
4 Mfl d|dT aT the same equations of motion, Eg), follow from an appli-
I_Zl 75 at a_' - a_q-_ [ cation of the generalized Gauss principle, Eg17). Carry-
Y Gi ' ing out the variation in Eq(C17) (with y=6) and retracing
the steps above leads back to EG10). Differentiating Eq.
d|dT aT . . .
X|—=|—|——-— (1) with respect to time gives
dt\ sq. aq; !
4 . 6 6
1 do doy.. doy
YoMt d[aT| aT E— 2 —q+—-=0, I=1...n
ij=1 2 |dtgqg,/ ddi (C19
d|dT aT .54 the variation of which at fixed coordinates and velocities
>< |\ - | T i i i = )
atl 75, 79, Qj q,6q leads to
do ® gy . )
(C16 5(d—t')=2 —59;=0, 9,69=0, I=1,...n.
where use was made of the symmetryMf, *(q.t) in the 1=1 09 (20

second equality, and of its vanishing variation at fixed coor-
dinates and velocities in the last equality. Finally, combiningFrom the statement of the generalized Gauss principle, Egs.

Eq. (C16) with Eq. (C10 leads to (C10 and (C20 hold simultaneously. Accordingly, multi-
B plying each of then constraints in Eq(C20) by a corre-
s zy M.J d f7T aT B sponding Lagrange multiplier, summing over the constraints,
21 2 dt 0q (9_q| i and adding the resulting sum to E10), gives
6 oT n
d &T aT . Z { ( 2 T s
% - _0.|}= = q;=0,
at &q] a0, Q ] 0, 4q,69=0 =1 | dt) gq, S oqp = q; )
(C17) 59,59=0. (C2)

which states that at any pOInt along the actual path of th¢o”ow|ng the usual argumenigo 24] of the Lagrange mul-
motion in (9,q,q)-space, the quantity in curly brackets mini- tiplier technique, the terms in brackets in EG21) all van-
mum with respect to variations in the generalized acceleraish, leading to the equations of motion, E8g).
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